Points of Bounded Height on Algebraic Varieties

نویسنده

  • RAMIN TAKLOO-BIGHASH
چکیده

Introduction 1 1. Heights on the projective space 3 1.1. Basic height function 3 1.2. Height function on the projective space 5 1.3. Behavior under maps 7 2. Heights on varieties 9 2.1. Divisors 9 2.2. Heights 13 3. Conjectures 19 3.1. Zeta functions and counting 19 3.2. Height zeta function 20 3.3. Results and methods 22 3.4. Examples 24 4. Compactifications of Semi-Simple Groups 26 4.1. A Concrete Counting Problem 27 4.2. Connection to Manin’s conjecture 34 References 37

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Asymptotics of Points of Bounded Height on Diagonal Cubic and Quartic Threefolds

For the families ax = by +z +v +w, a, b = 1, . . . , 100, and ax = by + z + v +w, a, b = 1, . . . , 100, of projective algebraic threefolds, we test numerically the conjecture of Manin (in the refined form due to Peyre) about the asymptotics of points of bounded height on Fano varieties.

متن کامل

Counting Primitive Points of Bounded Height

Let k be a number field and K a finite extension of k. We count points of bounded height in projective space over the field K generating the extension K/k. As the height gets large we derive asymptotic estimates with a particularly good error term respecting the extension K/k. In a future paper we will use these results to get asymptotic estimates for the number of points of fixed degree over k...

متن کامل

Counting rational points on ruled varieties over function fields

Let K be the function field of an algebraic curve C defined over a finite field Fq. Let V ⊂ PK be a projective variety which is a union of lines. We prove a general result computing the number of rational points of bounded height on V/K. We first compute the number of rational points on a general line defined over K, and then sum over the lines covering V . Mathematics Subject Classification: 1...

متن کامل

Algebraic Points of Small Height Missing a Union of Varieties

Let K be a number field, Q, or the field of rational functions on a smooth projective curve over a perfect field, and let V be a subspace of KN , N ≥ 2. Let ZK be a union of varieties defined over K such that V * ZK . We prove the existence of a point of small height in V \ZK , providing an explicit upper bound on the height of such a point in terms of the height of V and the degree of a hypers...

متن کامل

Unlikely, Likely and Impossible Intersections without Algebraic Groups

We formulate function field analogues for the PinkZilber Conjecture and for the Bounded Height Conjecture. The “special” varieties in our formulation are varieties defined over the constant field. We prove our function field Pink-Zilber Conjecture for all subvarieties, and we prove our function field Bounded Height Conjecture for a certain class of curves. We explain that for our problems the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008